正方形を谷に詰める 2023.04.16 の 図

本文

#0

src: 27,17,8,36,16,12,11,13,25,23,10,6,2,9
expected: 2,8,9,10,13,23,27

27 17 8 36 16 12 11 13 25 23 10 6 2 9

#1

src: 1,2,3
expected: 2

1 2 3

#2

src: 4,3,5,2,1
expected: 1,4

4 3 5 2 1

#3

src: 3,2,1,4,3,2,1
expected: 1,1,2,3

3 2 1 4 3 2 1

#4

src: 9,8,7,12,11,10,2,5
expected: 5,7,9,10,11

9 8 7 12 11 10 2 5

#5

src: 6,2,2,4,4,2,2,7,4,4,1,5
expected: 2,4,4,4,6

6 2 2 4 4 2 2 7 4 4 1 5

#6

src: 5,25,6,24,7,23,8,22,9,21
expected: 5,6,7,8,24

5 25 6 24 7 23 8 22 9 21

#7

src: 6,6,6,14,3,3,1,2,15,7,8,9
expected: 3,8,9

6 6 6 14 3 3 1 2 15 7 8 9

#8

src: 6,7,8,9,6,7,8,9,10,6,7,8,9
expected: 7,9,9

6 7 8 9 6 7 8 9 10 6 7 8 9

#9

src: 1,1,2,3,5,8,13,21,34,55,89,144
expected: 55,89

1 1 2 3 5 8 13 21 34 55 89 144

#10

src: 144,89,55,34,21,13,8,5,3,2,1,1
expected: 34,55,89

144 89 55 34 21 13 8 5 3 2 1 1

#11

src: 5,3,4,2,25,6,24,7,23,8,22,9,2,1
expected: 1,3,5,6,7,8,24

5 3 4 2 25 6 24 7 23 8 22 9 2 1

#12

src: 2,9,9,9,3,8,8,8,10,7,7,7,6,6,5,5
expected: 6,8,9

2 9 9 9 3 8 8 8 10 7 7 7 6 6 5 5

#13

src: 1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1
expected: 5,6,7,8,8

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

#14

src: 1,6,6,6,2,6,6,6,3,6,6,6,7,6,6,6,4,5
expected: 3,5,6,6,6

1 6 6 6 2 6 6 6 3 6 6 6 7 6 6 6 4 5

#15

src: 4,4,4,5,5,5,6,6,6,6,7,7,5,9,5,4,4,8
expected: 5,5,6,6,8

4 4 4 5 5 5 6 6 6 6 7 7 5 9 5 4 4 8

#16

src: 5,4,3,40,9,8,7,6,5,4,3,2,1,5,4,3,2,1
expected: 1,1,3,3,3,5,5,5,6,8,9

5 4 3 40 9 8 7 6 5 4 3 2 1 5 4 3 2 1

#17

src: 83,26,119,18,32,57,41,98,113,120,28,20
expected: 41,98,119

83 26 119 18 32 57 41 98 113 120 28 20

#18

src: 10,12,25,14,11,16,10,17,5,5,15,19,13,18
expected: 5,10,11,12,14,17

10 12 25 14 11 16 10 17 5 5 15 19 13 18

#19

src: 1,3,5,7,9,11,13,15,17,16,14,12,10,8,6,4,2
expected: 10,12,13,15,16

1 3 5 7 9 11 13 15 17 16 14 12 10 8 6 4 2

#20

src: 12,87,40,44,43,59,83,35,97,29,17,39,84,24
expected: 24,43,87

12 87 40 44 43 59 83 35 97 29 17 39 84 24

#21

src: 20,21,22,23,24,25,26,27,28,29,6,3,3,3,3,3
expected: 3,6,27,28

20 21 22 23 24 25 26 27 28 29 6 3 3 3 3 3

#22

src: 5,15,6,16,7,17,8,18,9,19,10,20,9,10,11,12
expected: 10,12,19

5 15 6 16 7 17 8 18 9 19 10 20 9 10 11 12

#23

src: 5,5,5,4,9,4,5,5,3,7,6,6,8,2,3,2,8,2,2,6,5
expected: 2,3,5,5,6,7

5 5 5 4 9 4 5 5 3 7 6 6 8 2 3 2 8 2 2 6 5

#24

src: 94,93,104,120,36,88,67,37,83,92,25,103,75,22
expected: 22,92,93,103

94 93 104 120 36 88 67 37 83 92 25 103 75 22

#25

src: 16,15,14,13,12,11,10,29,28,27,26,25,24,4,10,9
expected: 4,9,11,15,26,27

16 15 14 13 12 11 10 29 28 27 26 25 24 4 10 9

#26

src: 84,87,21,18,83,119,17,28,37,88,13,91,49,76,24
expected: 76,83,87,88

84 87 21 18 83 119 17 28 37 88 13 91 49 76 24

#27

src: 41,16,26,94,68,74,21,116,50,31,47,86,39,94,106
expected: 39,68,94,106

41 16 26 94 68 74 21 116 50 31 47 86 39 94 106

#28

src: 70,40,67,49,105,59,117,42,89,83,73,15,96,57,17
expected: 73,96,105

70 40 67 49 105 59 117 42 89 83 73 15 96 57 17

#29

src: 8,9,10,11,12,13,14,15,16,17,18,6,5,4,3,7,6,5,4
expected: 4,6,15,16

8 9 10 11 12 13 14 15 16 17 18 6 5 4 3 7 6 5 4

#30

src: 9,8,7,20,6,6,5,5,4,4,3,3,2,2,1,1,10,11,12,6,5,4
expected: 1,1,2,3,3,5,6,7,9,12

9 8 7 20 6 6 5 5 4 4 3 3 2 2 1 1 10 11 12 6 5 4

#31

src: 15,15,15,5,14,6,7,8,9,10,11,12,13,14,15,16,17,18
expected: 16,17

15 15 15 5 14 6 7 8 9 10 11 12 13 14 15 16 17 18

#32

src: 70,80,81,42,77,30,53,43,120,77,108,53,16,44,43,28
expected: 43,43,53,77,108

70 80 81 42 77 30 53 43 120 77 108 53 16 44 43 28

#33

src: 88,107,125,102,130,24,38,29,105,63,58,53,109,98,94
expected: 63,94,98,107,125

88 107 125 102 130 24 38 29 105 63 58 53 109 98 94

#34

src: 96,119,112,20,16,46,30,76,112,57,105,56,107,51,53,26
expected: 26,30,46,57,96,112

96 119 112 20 16 46 30 76 112 57 105 56 107 51 53 26

#35

src: 110,112,117,56,60,120,16,86,47,96,85,84,75,60,72,68,38
expected: 68,75,84,117

110 112 117 56 60 120 16 86 47 96 85 84 75 60 72 68 38

#36

src: 98,52,17,78,34,120,109,62,46,31,22,43,64,110,105,51,1,2,3
expected: 22,43,52,62,98,105

98 52 17 78 34 120 109 62 46 31 22 43 64 110 105 51 1 2 3

#37

src: 2,5,11,17,23,31,41,47,59,67,73,71,61,53,43,37,29,19,13,7,3
expected: 43,53,59,67,71

2 5 11 17 23 31 41 47 59 67 73 71 61 53 43 37 29 19 13 7 3

#38

src: 13,62,74,40,51,16,27,81,43,15,120,15,56,16,101,20,35,102,73,21
expected: 21,51,73,102

13 62 74 40 51 16 27 81 43 15 120 15 56 16 101 20 35 102 73 21

#39

src: 64,94,98,119,25,36,115,14,44,13,40,92,50,46,62,53,66,118,32,27
expected: 27,40,46,92,94,118

64 94 98 119 25 36 115 14 44 13 40 92 50 46 62 53 66 118 32 27

#40

src: 95,86,41,115,73,41,24,87,101,72,102,77,81,47,66,66,99,18,39,13
expected: 18,41,41,87,95,101,102

95 86 41 115 73 41 24 87 101 72 102 77 81 47 66 66 99 18 39 13

#41

src: 22,118,89,80,45,120,85,37,69,96,20,13,118,45,74,92,38,91,87,111
expected: 38,45,74,89,91

22 118 89 80 45 120 85 37 69 96 20 13 118 45 74 92 38 91 87 111

#42

src: 82,46,118,13,85,103,80,28,86,89,54,92,15,94,69,93,66,60,22,14,15
expected: 15,22,80,82,89,103

82 46 118 13 85 103 80 28 86 89 54 92 15 94 69 93 66 60 22 14 15

#43

src: 42,37,24,18,19,33,16,6,11,27,17,25,7,9,35,48,49,50,15,8,4,2,30,29
expected: 15,25,29,35

42 37 24 18 19 33 16 6 11 27 17 25 7 9 35 48 49 50 15 8 4 2 30 29

#44

src: 43,36,58,54,84,116,68,95,61,22,16,14,68,25,109,37,66,74,31,43,75,49
expected: 31,54,61,66,75,95

43 36 58 54 84 116 68 95 61 22 16 14 68 25 109 37 66 74 31 43 75 49

#45

src: 126,22,76,25,32,45,37,148,47,56,17,146,56,72,78,54,32,141,21,46,140,83
expected: 32,54,76,78,83,126

126 22 76 25 32 45 37 148 47 56 17 146 56 72 78 54 32 141 21 46 140 83

#46

src: 85,100,122,117,107,68,63,22,130,63,57,49,71,70,117,82,14,51,59,68,69,116
expected: 68,68,116,122

85 100 122 117 107 68 63 22 130 63 57 49 71 70 117 82 14 51 59 68 69 116

#47

src: 69,52,123,101,65,27,22,103,99,133,152,25,93,34,55,36,81,29,112,28,83,46,127,27,43
expected: 46,103,133

69 52 123 101 65 27 22 103 99 133 152 25 93 34 55 36 81 29 112 28 83 46 127 27 43

#48

src: 97,39,129,49,86,94,153,85,28,96,96,140,82,107,140,106,91,106,124,147,95,144,89,60,52
expected: 82,106,129,140

97 39 129 49 86 94 153 85 28 96 96 140 82 107 140 106 91 106 124 147 95 144 89 60 52

#49

src: 127,52,46,85,104,147,148,93,76,55,143,106,38,22,66,143,85,113,145,81,138,38,23,29,19,20,16,10
expected: 10,16,20,29,104,106,143,145,147

127 52 46 85 104 147 148 93 76 55 143 106 38 22 66 143 85 113 145 81 138 38 23 29 19 20 16 10

#50

src: 132,88,143,97,156,149,133,119,138,89,148,18,104,115,37,50,90,91,125,145,111,134,64,149,124,28
expected: 18,28,89,97,104,119,143

132 88 143 97 156 149 133 119 138 89 148 18 104 115 37 50 90 91 125 145 111 134 64 149 124 28

#51

src: 156,41,97,44,167,114,98,83,130,51,55,78,134,39,95,104,147,43,98,126,36,156,66,129,24,97,21,8,7
expected: 8,21,44,55,83,98,134,156

156 41 97 44 167 114 98 83 130 51 55 78 134 39 95 104 147 43 98 126 36 156 66 129 24 97 21 8 7

#52

src: 48,47,146,39,56,49,19,128,151,27,24,150,73,167,80,58,34,85,148,23,160,138,34,74,61,120,58,158,117
expected: 58,61,117,128,151,160

48 47 146 39 56 49 19 128 151 27 24 150 73 167 80 58 34 85 148 23 160 138 34 74 61 120 58 158 117

#53

src: 134,162,87,47,160,93,199,125,117,69,45,198,40,35,197,51,55,96,147,145,90,73,72,71,70,146,26,33,7,24
expected: 26,33,51,55,69,145,147,160,162

134 162 87 47 160 93 199 125 117 69 45 198 40 35 197 51 55 96 147 145 90 73 72 71 70 146 26 33 7 24

#54

src: 73,147,153,172,171,70,97,20,124,64,44,17,60,45,131,26,43,173,111,172,25,84,147,52,68,19,40,48,38,37
expected: 26,37,38,48,172

73 147 153 172 171 70 97 20 124 64 44 17 60 45 131 26 43 173 111 172 25 84 147 52 68 19 40 48 38 37